PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL KECK RESEARCH SYMPOSIUM IN GEOLOGY

April 2013
Pomona College, Claremont, CA

Dr. Robert J. Varga, Editor
Director, Keck Geology Consortium
Pomona College

Dr. Jade Star Lackey
Symposium Convener
Pomona College

Carol Morgan
Keck Geology Consortium Administrative Assistant

Christina Kelly
Symposium Proceedings Layout & Design
Office of Communication & Marketing
Scripps College

Keck Geology Consortium
Geology Department, Pomona College
185 E. 6th St., Claremont, CA 91711
(909) 607-0651, keckgeology@pomona.edu, keckgeology.org

ISSN# 1528-7491

The Consortium Colleges The National Science Foundation ExxonMobil Corporation
TECTONIC EVOLUTION OF THE CHUGACH-PRINCE WILLIAM TERRANE: SHUMAGIN ISLANDS AND KENAI PENINSULA, ALASKA
Faculty: JOHN GARVER, Union College, CAMERON DAVIDSON, Carleton College
Students: MICHAEL DELUCA, Union College, NICOLAS ROBERTS, Carleton College, ROSE PETTIETTE, Washington & Lee University, ALEXANDER SHORT, University of Minnesota-Morris, CARLY ROE, Lawrence University.

LAVAS AND INTERBEDS OF THE POWDER RIVER VOLCANIC FIELD, NORTHEASTERN OREGON
Faculty: NICHOLAS BADER & KIRSTEN NICOLAYSEN, Whitman College.
Students: REBECCA RODD, University of California-Davis, RICARDO LOPEZ-MALDONADO, University of Idaho, JOHNNY RAY HINOJOSA, Williams College, ANNA MUDD, The College of Wooster, LUKE FERGUSON, Pomona College, MICHAEL BAEZ, California State University-Fullerton.

BIOGEOCHEMICAL CARBON CYCLING IN FLUVIAL SYSTEMS FROM BIVALVE SHELL GEOCHEMISTRY - USING THE MODERN TO UNDERSTAND THE PAST
Faculty: DAVID GILLIKIN, Union College, DAVID GOODWIN, Denison University.
Students: ROXANNE BANKER, Denison University, MAX DAVIDSON, Union College, GARY LINKEVICH, Vassar College, HANNAH SMITH, Rensselaer Polytechnic Institute, NICOLLETTE BUCKLE, Oberlin College, SCOTT EVANS, State University of New York-Geneseo.

METASOMATISM AND THE TECTONICS OF SANTA CATALINA ISLAND: TESTING NEW AND OLD MODELS
Faculty: ZEB PAGE, Oberlin College, EMILY WALSH, Cornell College.

GEOLOGY, PALEOECOLOGY AND PALEOCCLIMATE OF THE PALEOGENE CHICKALOON FORMATION, MATANUSKA VALLEY, ALASKA
Faculty: CHRIS WILLIAMS, Franklin & Marshall College, DAVID SUNDERLIN, Lafayette College.
CRETACEOUS TO MIOCENE EVOLUTION OF THE NORTHERN SNAKE RANGE METAMORPHIC CORE COMPLEX: ASSESSING THE SLIP HISTORY OF THE SNAKE RANGE DECOLLEMENT AND SPATIAL VARIATIONS IN THE TIMING OF FOOTWALL DEFORMATION, METAMORPHISM, AND EXHUMATION
Faculty: MARTIN WONG, Colgate University, PHIL GANS, University of California-Santa Barbara.
Students: EVAN MONROE, University of California-Santa Barbara, CASEY PORTELA, Colgate University, JOSEPH WILCH, The College of Wooster, JORY LERBACK, Franklin & Marshall College, WILLIAM BENDER, Whitman College, JORDAN ELMIGER, Virginia Polytechnic Institute and State University, MICHAEL KENNEY, University of California-Santa Barbara.

THE ROLE OF GROUNDWATER IN THE FLOODING HISTORY OF CLEAR LAKE, WISCONSIN
Faculty: SUSAN SWANSON, Beloit College, JUSTIN DODD, Northern Illinois University.
Students: NICHOLAS ICKS, Northern Illinois University, GRACE GRAHAM, Beloit College, NOA KARR, Mt. Holyoke College, CAROLINE LABRIOLA, Colgate University, BARRY CHEW, California State University-San Bernardino, LEIGH HONOROF, Mt. Holyoke College.

PALEOENVIRONMENTAL RECORDS AND EARLY DIAGENESIS OF MARL LAKE SEDIMENTS: A CASE STUDY FROM LOUGH CARRA, WESTERN IRELAND
Faculty: ANNA MARTINI, Amherst College, TIM KU, Wesleyan University.
Students: SARAH SHACKLETON, Wesleyan University, LAURA HAYNES, Pomona College, ALYSSA DONOVAN, Amherst College.

INTERDISCIPLINARY STUDIES IN THE CRITICAL ZONE, BOULDER CREEK CATCHMENT, FRONT RANGE, COLORADO
Faculty: David Dethier, Williams College, Will Ouimet, U. Connecticut.
Students: CLAUDIA CORONA, Williams College, HANNAH MONDRACH, University of Connecticut, ANNETTE PATTON, Whitman College, BENJAMIN PURINTON, Wesleyan University, TIMOTHY BOATENG, Amherst College, CHRISTOPHER HALCSIK, Beloit College.

Funding Provided by:
Keck Geology Consortium Member Institutions
The National Science Foundation Grant NSF-REU 1062720
ExxonMobil Corporation
Keck Geology Consortium: Projects 2012-2013
Short Contributions—Snake Range, Nevada Project

CRETACEOUS TO MIocene EVOLUTION OF THE NORTHERN SNAKE RANGE METAMORPHIC
CORE COMPLEX: ASSESSING THE SLIP HISTORY OF THE SNAKE RANGE DECOLLEMENT AND
SPATIAL VARIATIONS IN THE TIMING OF FOOTWALL DEFORMATION, METAMORPHISM, AND
EXHUMATION
Faculty: MARTIN WONG, Colgate University, PHIL GANS, University of California-Santa Barbara.

GEOCHRONOLOGY AND STRAIN ANALYSIS OF THE JURASSIC PLUTONIC COMPLEX ON THE
SOUTHERN FLANK OF THE ORHERN SNAKE RANGE, NEVADA
EVAN MONROE, University of California, Santa Barbara
Research Advisors: Phillip Gans, Martin Wong

MICROSTRUCTURAL ANALYSIS OF MYLONITIC MARBLE OF THE NORTHERN SNAKE RANGE
CASEY PORTELA, Colgate University
Research Advisor: Martin Wong

INSIGHTS INTO THE TECTONIC EVOLUTION OF THE NORTHERN SNAKE RANGE
METAMORPHIC CORE COMPLEX FROM 40AR/39AR THERMOCHRONOLOGIC RESULTS,
NORTHERN SNAKE RANGE, NEVADA
JOSEPH WILCH, College of Wooster
Research Advisor: Shelley Judge & Robert Wooster

METAMORPHIC CORE COMPLEX EVOLUTION: VERTICAL STRAIN GRADIENT IN THE
NORTHERN SNAKE RANGE DECOLLEMENT
JORY LERBACK, Franklin & Marshall College
Research Advisor: Zeshan Ismat, Martin Wong, Phillip Gans

GEOCHEMISTRY AND GENESIS OF JURASSIC GRANITOIDs FROM THE NORTHERN SNAKE
RANGE, NV
WILL BENDER, Whitman College
Research Advisor: Kirsten Nicolaysen

INTRUSIVE AND DEFORMATIONAL HISTORIES OF THE FOOTWALL ROCKS IN THE CENTRAL
PART OF THE NORTHERN SNAKE RANGE, NEVADA
MICHAEL KENNEY, University of California—Santa Barbara
Research Advisor: Phil Gans

Keck Geology Consortium
Pomona College
185 E. 6th St., Claremont, CA 91711
Keckgeology.org
INTRODUCTION

The Snake Range, located in east central Nevada (Figure 1) is one of the archetypical examples of a metamorphic core complex, where large-scale crustal extension associated with slip on a presently low-angle “detachment” fault (the Northern Snake Range Décollement or NSRD) has juxtaposed mid-crustal, highly strained and metamorphosed rocks in the footwall against imbricately normal faulted-supracrustal rocks in the hanging wall. The Snake Range has played a central role in our understanding of extensional tectonics (e.g. Wernicke, 1981; Miller et al., 1983; Bartley and Wernicke, 1984; Gans et al., 1985 and many others), and yet many fundamental questions about the tectonic and structural development of this feature remain largely unanswered. In particular, the relationship between plutonism, metamorphism, and penetrative strain in the footwall of this complex and the exhumation and slip on the bounding detachment fault remain controversial. The goal of this project was to provide new constraints on the structural and tectonic development of the core complex by combining structural field mapping, strain analyses, and microstructural studies together with U-Pb geochronology and 40Ar/39Ar thermochronology. Our study focused on the lower plate of the core complex and examined spatial variations in the temperatures, magnitude, timing, and kinematics of penetrative strain, the emplacement ages of lower plate intrusions, and the exhumation (cooling) history of metasedimentary and plutonic rocks of the football.

BACKGROUND

The northern Snake Range is an 80 km-long by 25 km-wide range in the northern Basin and Range province. The most prominent structural feature of the range is the northern Snake Range Décollement (NSRD),
a low-angle fault that juxtaposes an upper plate of complexly normal-faulted Paleozoic and Tertiary strata against a footwall of highly strained metasedimentary and igneous rocks (Figure 2). Miogeoclinal strata in the footwall of the NSRD vary in age from late Precambrian to Ordovician and were deeply buried and metamorphosed to amphibolite facies during the late Cretaceous (Miller et al., 1988, Cooper et al., 2010). The footwall is relatively unfaulted but records a complex history of ductile deformation, metamorphism, and intrusion (Lee et al., 1987; Miller et al, 1988). The hanging wall or upper plate of the NSRD includes Middle Cambrian to Permian miogeoclinal rocks and Tertiary sedimentary and volcanic rocks. In striking contrast to the lower plate, these rocks are little metamorphosed but highly faulted and tilted by multiple generations of normal faults (Gans and Miller, 1983). The NSRD defines a north-trending asymmetric dome with ~ 5000 feet (1.5 km) of structural relief.

The position of the Snake Range in the hinterland of the Cretaceous Sevier orogenic belt (Fig. 1) led Misch (1960) and later workers to relate the low-angle “décollement faulting” in the range to Mesozoic thin-skinned thrust faulting farther east. The first detailed geologic studies in the range by Miller et al. (1983) and Gans and Miller (1983) suggested that the main structural features were instead extensional in origin and Cenozoic in age. Based on stratigraphic and structural relationships, they proposed that the NSRD originated as a sub-horizontal ductile-brittle transition zone between a brittlely extending upper plate and a ductilely stretching lower plate – an interpretation that was challenged by Bartley and Wernicke (1984), who interpreted the structure as a major low-angle normal fault with 10s of km of slip.

Subsequent studies have expanded the geologic mapping and utilized structural analyses, seismic reflection profiling, metamorphic petrology,
geochronology and thermochronology in further efforts to shed light on the origin of the NSRD, as well as on the age(s) and tectonic significance of lower plate metamorphic fabrics and its geometric and kinematic relationship to the NSRD (e.g. Rowles, 1982; Gans and Miller, 1983; Grier, 1983; Miller et al., 1983; Gans et al., 1985; Lee and others, 1987; Miller et al., 1989; Gans et al., 1989; Lee and Sutter, 1991; Lee, 1995; Gans et al., 1999a and b; Miller et al. 1999a, b, and c; Lee et al., 1999a, b, and c; Cooper et al., 2010). These studies have demonstrated a number of key relationships.

Lower plate metasedimentary rocks consist of poly–metamorphosed late Precambrian to Lower Cambrian quartzites and pelites and Middle Cambrian to Ordovician marble. U-Pb dating has identified Jurassic and Cretaceous granitic plutons and Tertiary dike swarms that locally intrude lower plate units. Lower to upper greenschist-facies retrograde metamorphism and deformation of Paleocene (?) to Miocene age strongly affected much of the lower plate, causing retrogression of older peak-metamorphic assemblages. This retrograde event was accompanied by an intense penetrative strain, resulting in a subhorizontal, bedding-parallel mylonitic foliation and a WNW–trending lineation. The geometry and kinematics of this footwall strain and what relationship (if any) it has to the evolution of the NSRD were the primary focus of our multidisciplinary study.

LOWER PLATE STRAIN

A number of student projects focused on better understanding the geometry, kinematics, magnitude, and temperature conditions of lower plate strain. Four projects investigated strain conditions in footwall quartzite units across the range. Jory Lerback and Jordan Elmiger both examined strain in quartzite units in Hendry’s Creek using petrographic and electron backscatter diffraction (EBSD) studies. Jory examined vertical strain gradients within quartzite units beneath the NSRD. Her work found that strain decreases in the footwall beneath the NSRD from X/Z values >>10 near the top of the footwall to values <4 in the deepest structural levels. Conditions of deformation also appear to increase downwards in the footwall. Jordan studied east-west gradients within the Prospect Mountain quartzite. His work documents a clear top-east sense of shear across the footwall, a gradual rotation of stretching lineations from N50W to S80E from west to east, and an increase in strain magnitude towards the east (confirming work by Lee, 1987?).

Michael Kenney examined quartzite units in the northern footwall (Smith Creek area) and found that deformation mechanisms were dominated by sub-grain rotation (SGR) and grain boundary migration (GBM), suggesting deformation temperatures >400°C and likely 450-550°C. Quartz lattice preferred orientation (LPO) fabrics suggest a dominance of prism <a> and rhomb <a> slip, supporting upper greenschist to lower amphibolite grade conditions during deformation. Similar results were found by Evan Monroe, who focused on deformation in plutonic rocks in the southern part of the range (Silver Creek area).

Casey Portela investigated marble mylonites across the range using a combination of petrographic and EBSD analyses as well as applying the calcite-dolomite thermometer. In contrast to the quartzite units, Casey’s work revealed much greater complexity in the kinematics of the marble, as both top-east and top-west shear were evidence (see also Cooper et al., 2010). This is likely due to highly heterogeneous strain produced by flow around large dolomitic boudins. Calcite-dolomite thermometry results may indicate somewhat lower temperatures of deformation in the marbles (~350-450°C) compared to the quartzite mylonites.

TIMING OF MYLONITIC DEFORMATION

Our work on the temperatures of deformation in the mylonitic shear zone, when combined with new and existing thermochronology, provide important constrains on the timing of mylonitic deformation and whether it is related to Miocene slip on the NSRD.

Joe Wilch analyzed muscovite and K-feldspar Ar/39Ar thermochronologic data originally presented by Gans et al. (2011 and unpublished work). Multiple diffusion domain (MDD) modeling of K-feldspar results suggest a period of rapid footwall cooling beginning at ca. 20 Ma and continuing until at least 15 Ma at cooled the footwall from ~300 °C to <100 °C. These results match well with prior fission track results (Miller et al., 1999) and document rapid top-east (normal) slip on
the NSRD. The 40Ar/39Ar results document a ~150-
200 °C temperature difference between the crest and
eastern flank of the range at ca. 20 Ma, suggesting
that the NSRD initiated at a significantly steeper dip.
Joe’s analysis of muscovite 40Ar/39Ar results indicate
complexity in the age spectrum of most samples,
likely as a result of mixtures of different compositions
of muscovite in the samples. However, the generally
older ages (>20 Ma) given by muscovite and the high
temperature steps of K-feldspar samples suggest the
entire range had cooled below 400°C well before 20
Ma (largely by 30-50 Ma). Given the petrofabric work
described in the previous section, this result suggests
that most, if not all, of the footwall strain occurred
prior to the Miocene and is therefore unrelated to
Miocene slip on the NSRD. It is possible that the
geometric similarity of the NSRD to the underlying
footwall shear zone is a result of the NSRD reactivating
the older mylonitic shear zone rather than the features
being coeval.

AGE AND PETROLOGY OF LOWER PLATE
PLUTONS

Several student projects focused on refining our
understanding of the character, petrology, and age of
plutonic units in the lower plate.

Michael Kenney conducted U-Pb zircon
geochronology by LA-ICPMS in the central/northern
part of the range in Smith Creek. His work on the
Horse Canyon Orthogniess, previously dated at
~100±8 Ma (Gans et al., 1999; Miller et al., 1988),
produced a much more precise age of 100.9–101.6
± 0.5 Ma. He also dated several leucogranite bodies
in the area, with concordant U-Pb ages that are
dominantly 84–85 Ma, with one yielding a concordant
age of 76.1 ± 1.5 Ma. These results are also consistent
with previous geochronology (Miller et al., 1988;
Gans et al., 1999) but greatly improve the precision.
The younger age suggests a more protracted phase of
leucogranite generation than previously recognized.

Evan Monroe conducted U-Pb zircon geochronology
by LA-ICPMS on plutonic units in the southern part
of the Northern Snake Range. Previous work on
these units (Miller, et al., 1988) suggests that both
the Silver Creek and Old Mans Canyon plutons are
approximately 160 Ma and subsequent TIMS dating
(J.E. Wright, unpub. data, referenced in Miller et al.,
1999) concluded both plutons were emplaced 155±5
Ma. Evan’s work precisely dates the Old Man Canyon
pluton at 160 ± 1 Ma and indicates that the wide
range of compositional variations in this mapped unit
are all the same age. Evan also found that the Silver
Creek pluton is modestly but distinctly younger and
was emplaced at 154-152 Ma. Evan’s work on dikes
in the Silver Creek provide important constraints
on the timing of fabric formation. A ~35 Ma dike
cuts the main sub–horizontal foliation in the Silver
Creek granite, but the dike has a well developed fabric
internally – perhaps indicating that mylonitization
was still ongoing at this time, although the fabric in
the dike is quite discordant to the host rock fabric,
suggesting the dike fabric may be highly localized and
younger than the main fabric here. A 23 Ma rhyolite
dike cuts sharply across the mylonitic fabric in Silver
Creek and is entirely undeformed, which provides a
firm minimum age for the fabrics in this area. This
interpretation is consistent with our results combining
the petrofabrics and thermochronology that much of
the footwall fabrics may pre-date Miocene slip and
exhumation on the NSRD.

CONCLUSIONS

A variety of evidence supports the conclusion that the
lower plate fabrics in the Snake Range core complex at
least partly (and perhaps mostly) pre-date Miocene slip
and exhumation on the brittle NSRD (ca. 20 Ma). The
geometric similarities between the ductile fabrics and
brittle fault may be a result of brittle reactivation of the
older ductile shear zone. Most models of core complex
formation view the ductile shear zone as the mid-
crustal manifestation of the brittle detachment fault.
However, our results call into question that model. The
exact timing of this older ductile footwall deformation
remains unclear, as does its tectonic significance, although given its similarity to the geometry and kinematics of Miocene slip on the NSRD, these ductile fabrics may document a pre-Miocene extensional event. At the inception of rapid Miocene slip on the NSRD, the eastern flank of the range was 150-200°C hotter than the crest of the range, suggesting the presently low-angle NSRD initiated at a steeper dip rather than initiating at a mechanically unfavorable shallow dip.

ACKNOWLEDGEMENTS

This project was made possible by funding from the Keck Geology Consortium. We thank faculty and staff at UC Santa Barbara for their assistance with the project, especially Andrew Kylander–Clark for assistance with the U-Pb LA-ICPMS analyses, John Cottle for use of his mineral picking lab, and Gareth Seward for assistance with the SEM. Rick Law, Zeshan Ismet, Kirsten Nicolasen, and Shelly Judge are all thanked for their advising while students were at their home institutions. Rick Conrey at the WSU GeoAnalytical lab and David Collins at the Binghamton University microprobe lab are thanked for hosting students in their labs during the year.

REFERENCES CITED

Hintze, L.F., 1978, Sevier orogenic attenuation faulting in the Fish Springs and House Ranges, western Utah: Brigham Young University Geology Studies,

Lee, J., 1990, Structural geology and \(^{40}\text{Ar}/^{39}\text{Ar}\) thermochronology in the northern Snake Range metamorphic core complex, Nevada: [Ph.D. thesis] Stanford University, Stanford, California, 184 p.

Lee, J., 1995, Rapid uplift and rotation of mylonites: Insights from potassium feldspar \(^{40}\text{Ar}/^{39}\text{Ar}\) thermochronology, northern Snake Range, Nevada: Tectonics, v. 14, p. 54-77.

