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INTRODUCTION

Since dolomite was discovered over 200 years ago this 

enigmatic mineral has been studied in the field and 
laboratory and yet, little consensus has been reached 

over “the dolomite problem”: dolomite is abundant in 

the geologic record, but despite modern environments 

that are supersaturated it precipitates in few locations 

and is nearly impossible to produce in labs (Graf and 

Goldsmith 1956; Vasconcelos and McKenzie 1997).  

Fewer continental locations than marine settings 

have been studied (De Deckker and Last 1989) and 

little is known about how magnesium isotope ratios 

(δ26Mg) are affected during dolomite formation.  

The occurrence of dolomite in the sediments of 

Deep Springs Lake (DSL), an alkaline playa lake in 

eastern California, provides an opportunity to study 

magnesium isotope systematics associated with 

modern dolomite formation.  This project provides 

new data on magnesium isotope fractionation 

associated with low-temperature dolomite formation in 

a lacustrine continental setting through the analysis of 

the sediments and pore water of DSL.  

Profiles of δ26Mg coupled with [Ca2+], and [Mg2+] 

in the lake sediment and pore waters provide a 

new perspective on where and how dolomite is 

precipitating in DSL.  The availability of magnesium 

ions is a limiting factor for dolomite production at 

DSL (Meister et al. 2011), and variations in the ion 

concentrations and the Mg/Ca ratio with depth and 

at various locations on the lake bottom can indicate 

influential factors at play.  The fractionation of 
magnesium isotopes in the sediment is telling because 

carbonate minerals preferentially take up 24Mg while 

clay minerals incorporate the heavier isotopes 25Mg 

and 26Mg (Higgins and Schrag 2010).  The data 

collected and analyzed in this study give insight 

into the roles of microbial activity at depth in the 

subsurface, the differences between spring sites and 

lake bottom locations, and important geochemical 

and mineralogical horizons in the sediment of Deep 

Springs Lake.

SITE DESCRIPTION

Deeps Springs Lake lies in California’s Inyo County 

east of the Sierra Nevada mountain range.  It is in the 

northeastern trending Deep Springs Valley between 

the White and Inyo Mountains bounded by faults 

(Peterson, Bien, and Berner 1963).  This ephemeral 

alkaline lake is at an elevation of about 1500 m and 

is 2.7 km across.  The lake can be divided into zones 

based on the dominant mineralogy of the overlying 

evaporite crusts.  The crusts form an uneven surface 

marked by desiccation cracks and teepee structures.  

The thick and sticky underlying mud is dark green-

grey.  The lake bottom is extremely flat except for the 
remains of an artificial levee, which now stands only 
along the eastern side.  

 

DSL is recharged by seasonal melt water from a 

drainage area of 200 mi2 in the surrounding mountains 

(Jones 1965).  The lake is also fed by a network of 

springs discharging into the lakebed.  The annual 

precipitation averages 5 inches on the valley floor to 
15 inches at the basin divide (Jones 1965).  

To the north and east are granodioritic intrusive bodies 

while older sedimentary strata lie south and west 

(Jones 1965).  The sedimentary rocks are composed 

of quartzite, sandstone, siltstone, shale, limestone, 
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dolomite sandstone, and dolomitized limestone (Jones 

1965; Nelson 1962; 1966).  The bulk of rocks in the 

mountains around the northeastern end of the valley 

are monzonite plutons (Nelson 1966; McKee and 

Nelson 1967).  The recent deposits are Quaternary 

alluvial fans and lakebeds; alluvium on the valley 

floor is at least 600 ft deep and lacustrine deposits 
extend to a depth of 30 ft and reach 5 miles north of 

the current playa (Jones 1965).

METHODS

The lack of standing water during the field season in 
June 2013 revealed numerous small springs on the 

northern side of the Deep Springs Lake saltpan, and 

field efforts were focused on that area.  Temperature, 
pH, and salinity measurements were taken at each 

spring studied as well as the photographs, dimensions, 

and GPS coordinates.  Spring water and peeper-

collected pore water were filtered, stored in centrifuge 
tubes, and kept on ice.  Whole and sub-sampled push 

cores of sediment were taken from two lakebed sites 

and five sites adjacent to springs using meter-long 
tubes of 2 or 3 inches in diameter.  Pore water was 

collected by field-deployed peepers at one spring, 
9 Spring (9S), and one non-spring lake bottom site, 

Muddy Site (MS), and by centrifugation of sub-

sampled sediment cores, Far Out (FO). 

In the lab, sediment was washed in de-ionized water, 

dried, homogenized, and weighed before dissolution 

in 2% trace metal grade acetic acid.  Major and 

trace element concentrations for water and sediment 

samples were determined through inductively coupled 

plasma optical emission spectrometry (ICP-OES) at 

Amherst College.  Magnesium for isotopic analysis 

was separated by ion chromatography (IC) and 

isotopic ratios measured by multi-collector inductively 

coupled plasma mass spectrometry (MC-ICP-MS) at 

Princeton University.  Figure 1. The δ26Mg of both 9S and FO cores, and 9S pore water.  
Inset shows δ25Mg against δ26Mg.

Figure 2. The magnesium and calcium 
concentrations for (A) 9S core, (B) 
FO core, and (C) 9S pore water (Plon 
2014).
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RESULTS

The Mg stable isotope data show that there is very 

little variation in isotopic composition with depth 

in dolomite at FO and 9S, and little variation in the 

9S pore water (Fig. 1).  Dolomite from both cores 

has δ26Mg values of about -1.8‰ and the 9S pore 

water is about 0.0‰.  The precision of the δ26Mg 

measurements is ±0.08‰.  The correlation coefficient 
for the isotopic ratios is R2 = 0.998 and the regression 

line slope is 0.516 (Fig. 1).  The paired pore water-

dolomite  δ26Mg data yield a fractionation factor of 

1.8‰ between the pore water and sediment at 9S.  The 

MS pore water was too saline and the [Mg2+] too low 

for the successful separation of magnesium through 

ion chromatography such that isotopic analysis was 

not possible.  

Significant changes in [Ca2+], [Mg2+], and Mg/Ca 

occur at a depth of 30-40 cm below the exposed DSL 

sediment surface at 9S and FO (Figs. 2-3).  In the 

9S core the concentration of ions follow each other 

closely, with magnesium higher than calcium, until 

40 cm depth where they diverge sharply and calcium 

becomes much more concentrated than magnesium.  In 

the 9S pore water the concentrations are much lower, 

never above 5 mM of either magnesium or calcium, 

but magnesium is at least four times as concentrated 

as calcium until 37 cm (Fig. 2).  FO pore water 

magnesium and calcium concentrations were below 

the detection limit.

FO and 9S cores have Mg/Ca ratios 1 ± 0.3 until a 

depth of 30-40 cm where there is a dramatic decrease 

in both; this is pronounced in the spring-associated 

9S core (Fig. 3).  In contrast, the Mg/Ca ratio of the 

pore water at 9S starts at a high of 6.9 and decreases 

gradually to 4.4 before plummeting to ~1 (Fig. 3).  

At 9S, this shift at depth corresponds to a nearly 

50% decrease in the percentage of dolomite and an 

accompanying increase in aragonite the carbonate 

portion of the sediment (Fig. 4).  While the 9S Mg/

Ca ratio remains somewhat constant before dropping 

significantly at 40 cm of depth, the FO site has smaller 
variations beginning at the top of the core and a much 

smaller drop in the Mg/Ca ratio at that depth.

DISCUSSION 

Down core trends in δ26Mg show strong homogeneity; 

the 9S pore water varies <0.1‰ and the FO and 9S 

sediment cores only up to 0.25‰ (Fig. 1).  The slight 

variations are not significant because the range of 
values is on the same order as the uncertainty of these 

measurements.  This result contrasts strongly with 

studies which report pore water variations up to 2‰ 

in marine sediments (Higgins and Schrag 2010) due 

to authigenic dolomite precipitation in the sediment.  

The δ26Mg values at DSL are nearly uniform with 

depth and the different sites, spring-related and 

non-spring, show little variation between them, 

suggesting dolomite precipitation from geochemically 

homogeneous water.  

Figure 3. (A) The Mg/Ca molar ratios 
of 9S pore water (Plon 2014) and 9S 
and FO cores. (B) Detail of the two 
cores that shows the drop at 400 mm 
depth.
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The Mg isotope fractionation factor of ~1.8‰ 

between 9S pore water and dolomite is consistent 

with the precipitation of dolomite found in studies of 

marine dolomite authigenesis (Higgins and Schrag 

2010).  While the down core δ26Mg trends differ, the 

fractionation factor of the continental lake DSL and 

marine cores are the same, suggesting that both sites 

are producing dolomite through the same process.

The data show that there is no isotopic evidence 

for dolomite precipitation within the sediment of 

DSL where anaerobic microbial activity is highest: 

at anoxic depths in the sediment or near springs.  

These results challenge findings that emphasize 
the importance of microbial metabolism in the 

production of dolomite (Vasconcelos and McKenzie 

1997).  Sulfate-reducing bacteria are present in the 

anoxic depths of carbonate mud, but the homogeneity 

of δ26Mg at all depths measured in cores and pore 

water indicate that sulfate reducing bacteria are not 

altering conditions in the sediment to facilitate the 

precipitation of dolomite (Vasconcelos and McKenzie 

1997).  If dolomite were forming in the sediment from 

the pore water, and facilitated by anaerobic microbial 

activity, the pore water δ26Mg would decrease 

significantly below the oxidized layer of sediment.  
In addition, the fractionation factor would not be so 

consistent because precipitation in the sediment would 

alter the δ26Mg of pore water.  This study provides 

independent evidence from δ26Mg trends supporting 

the hypothesis that dolomite precipitates in the DSL 

water rather than within the sediment (Meister et al. 

2011).

Changes in the calcium and magnesium ion 

concentrations, the Mg/Ca ratios, and percentage 

of dolomite in the carbonate portion of sediment 

identify the 30-40 cm zone as a significant depth 
in the DSL sediment.  This is possibly the interface 

between the lake water and ground water that is 

feeding the springs.  However, it is also possibly 

a change in mineralogy related to past changes in 

the lake chemistry that occurred as those sediments 

precipitated from the lake water.  Sampling cores 

farther towards the center of the lake would give 

insight into this phenomenon.  The shift remaining at 

a constant depth would suggest an interface between 

Figure 4. The percentage of dolomite in the carbonate sediment 
(dolomite, calcite, and aragonite) (Plon 2014).

lake and ground water.  However, the center of the 

lake has standing water more than the edges and 

would produce more sediment than peripheral areas, 

therefore, if the shift were to gradually deepen this 

would indicate a change in the lake’s chemistry at 

some point in the past that affected the mineralogy.  

The sedimentation rate for DSL has been estimated 

at 1 mm per 1-30 yrs based on 14C dating of dolomite 

crystals of different sizes (Peterson, et al., 1963); for 

a depth of 30-40 cm that gives an age range of 300 

- 12,000 yrs.  Should this shift prove to be a relic of 

a past change in lake water chemistry, further dating 

work would prove valuable to narrow the range of 

when it happened.

The δ26Mg results reported here should be augmented 
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and repeated by studying more sites.  Measuring the 

magnesium isotopic ratios of other cores and pore 

water previously collected will strengthen this result.  

It would be especially helpful to collect cores and pore 

water from locations closer to the center of the lake.  

The most important additional data will be the δ26Mg 

of the lake water itself, which will require sampling in 

late winter or spring when the lake is full.

CONCLUSIONS

The data collected from Deep Springs Lake and 

analyzed in this project support the following 

conclusions about the nature of the magnesium isotope 

cycle and the production of dolomite at the lake.

1. The δ26Mg measured in the sediments and pore 

water of DSL are nearly constant with depth.  These 

values vary <0.1‰ in the pore water and only up to 

0.25‰ in the cores.  

2. There is no difference observed between the spring-

related and non-spring sites studied.  The proximity to 

areas of exceptionally high microbial activity below 

the sediment-water interface doesn’t impact the δ26Mg 

of sediments.

3. The magnesium isotope fractionation factor 

measured is ~-1.8‰ for this continental lacustrine 

setting.  This is the same as is found in marine 

settings, suggesting that there are similar processes 

occurring in marine and continental settings of 

dolomite precipitation.

4. There is an interface observed at a depth of 30-40 

cm where changes in the magnesium and calcium 

concentration, Mg/Ca ratio, and percent of dolomite in 

the carbonate sediment appear at both spring and non-

spring sites and in both pore waters and sediments.
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