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ABSTRACT

Modern dolomite (CaMg(CO
3
)

2
) precipitation is 

extremely limited and occurs in few locales, despite 

oversaturation in many environments. The significant 
quantity of dolomite present in Deep Springs Lake, 

CA provides an opportunity to test the hypothesis that 

bacteria surmount the barriers that normally prevents 

dolomite precipitation.  Analysis of stable carbon and 

oxygen isotope ratios of modern sediment in five cores 
obtained near springs in the lake test the hypothesis 

that biological activity induces dolomite formation.  

The δ13C average value from bulk carbonate sediment 

at all studied locations (3.8‰) is consistent with 

equilibration with atmospheric CO
2
.  This dolomite 

could not have precipitated from inorganic carbon 

dissolved in pore water adjacent to a methane-rich 

spring, which has greatly enriched average δ13C 

values (9.4‰).  For an environment in equilibrium, 

the inorganic precipitation of carbonates would 

normally create enriched δ13C values in comparison 

to the pore water.  For spring site 9S#11, the offset 

between carbon isotopes of carbonate and organic 

carbon in sediment cores (Δ13C = δ13C
carbonate 

- δ13C
organic

) 

was homogeneous throughout the depth profile and 
averaged 26.9‰.  Both lines of evidence suggest that 

dolomite precipitation in Deep Springs Lake does not 

rely upon bacterial mediation.

INTRODUCTION

Understanding modern microbiological contributions 

to carbonate precipitation is advantageous for 

identifying signatures of early life on Earth and may 

aid in detection of biological activity on other planets.  

Several recently conducted studies, including Meister 

et al. (2011), Wacey et al. (2007), and Botz & von der 

Borch (1984), have utilized stable isotope ratios to aid 

in understanding the mechanism of modern dolomite 

formation, testing hypotheses of biological mediation 

versus an ion super-saturation model.  By analyzing 

carbon-13 and oxygen-18 isotope fractionation, this 

study investigated the potential associated effects 

of sulfate-reducing bacteria and methanogens on 

dolomite precipitation from sites clustered around the 

northern limits of Deep Springs Lake.

METHODS

Sediment Preparation

In June 2013, sediment cores were taken from the 

viscous mud below the saltpan of Deep Springs Lake 

~1 m laterally away from each spring using ~5 cm 

and ~6.5 cm diameter polyurethane tubes.  The cores, 

taken from four sites (MS, 9S, SS, FO), were sampled 

at regular depths that matched the depths of sampled 

pore water.  To prevent the formation of salt crystals 

from pore water, the samples were washed with 

deionized (DI) water in triplicate before they were 

dried in an oven (70°C) overnight (~12 hours) and 

finely powdered.

Isotope Measurements

The δ13C and δ18O ratios were determined on the 

washed and dried aliquots of dried an homogenized 

sediment. Thirty-four sample tubes, including 6 

Washington State University (WSU)-Carbonate 
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Standards, 2 NBS-19 Standards, 5 doubled samples 

and a blank, were placed in the Finnigan GasBench II 

mass spectrometer and kept at a constant temperature 

of 26°C.  The samples were flushed with pure helium 
(~5 min per tube) and 0.1 mL of 100% phosphoric 

acid was added.

In order to measure δ13C and Total Organic Carbon 

(TOC) content from the organic matter, the washed 

and dried sediment was dissolved, leaving an 

insoluble residue.  Enough 3 M hydrochloric acid was 

added to ~3.0 g of powdered sediment for the total 

quantity within each vial to reach 35 mL.  To measure 

TOC, ~5.0 mg of the insoluble residue was measured 

on a high precision Sartorius microbalance and placed 

into tin capsules (5 x 9 mm).  Samples were burned 

in excess of oxygen and an elemental analyzer at 

Wesleyan University then analyzed the resulting CO
2
 

and N
2
 gases emitted.  Using the masses of carbon 

and initial sediment weights, the TOC was calculated.  

To measure δ13C of organic matter, approximately 

5.0 mg of the insoluble residue was weighed into tin 

cups, gently compacted and loaded into Oregon State 

University’s (OSU) Costech Zero Blank Autosampler 

with isotopic lab standards.  The residue was then 

flash combusted at above 1000°C using a Carlo Erba 
NA1500 elemental analyzer and analyzed through use 

of a DeltaPlusXL isotope ratio mass spectrometer.

RESULTS

Total Organic Carbon

For these samples, TOC (Fig. 1) varies between 0.2 

and 1.3 wt % and in three cores appears to increase 

with depth.  Core FO#4, located centrally in the 

lake, remains relatively homogenous with depth but 

exhibits a much higher value overall (average ~1.2 

wt %).  At the lake margin, TOC in cores SS#9 and 

MS#2, the non-spring site, more than doubles by 

the last point recorded at depths of 26 cm and 47 

cm respectively.  Core 9S#11 shows that sediment 

adjacent to the spring with the largest output of 

surface water has very consistent TOC content until 

~40 cm below the surface where an excursion to 

higher organic content exists.

Carbon and Oxygen Isotopes

The δ13C and δ18O values for matter (Fig. 2) in bulk 

carbonate sediment (dolomite and aragonite) display 

consistent values and both plots trend slightly less 

positive values with increasing depth for all four 

Figure 1.  Down-core profile of Total Organic Carbon (TOC) 
content of bulk soft sediment from Deep Springs Lake sites SS#9, 
FO#4, MS#2 and 9S#11. A dashed line identifies a non-spring 
site, MS #2, whereas a solid line indicates 9S#11, the most 
complete core for a spring site. Differences in the reproducibility 
of each carbon and oxygen measurement are smaller than symbol 
size on this and subsequent plots. Vertical error bars show the 
sampling interval from which each sediment plug was obtained.
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cores.  The δ13C values vary between +1.4 and +4.3‰ 

whereas the δ18O values vary between +0.9 and  

+5.8‰.  For both isotopic tracers, spring site 

9S#11 stays relatively homogenous at +4 and +3‰ 

respectively until ~40 cm below the surface when 

isotopic compositions drop rather dramatically to +2.5 

and +0.5‰ respectively.  Both plots also show that the 

isotopic compositions for site MS#2, a more centrally 

located, non-spring site compared to 9S#11, sharply 

decrease at ~25 cm below the surface.  The δ13C values 

for organic matter (Fig. 2) in bulk sediment range from 

-21 to -28‰ throughout the profile.  The values for 

core 9S#11 remain relatively consistent and illustrate 

a minor steady depletion with depth.  As seen in the 

carbonate data, core MS#2, a non-spring site, exhibits 

a distinct deviation towards more negative values at 

~25 cm below the crust.

The Δ13C values (Fig. 3), the isotope fractionation 

between the carbonate and organic matter, vary 

between 23 and 31‰ throughout the profiles.  
Core 9S#11 exhibits a monotonic increase in the 

isotopic difference with depth while the other cores 

demonstrate a slightly more irregular distribution.  

MS#2 shows a much larger consistent change in depth 

than any other the other core sites.  At shallow depths 

(~5 - 20 cm) all of the sites display similar isotopic 

data values (Figs. 2 and 3).

Figure 2.  Down-core profiles of δ13Ccarbonate, δ
18Ocarbonate & 

δ13C
organic

 in bulk sediment from Deep Springs Lake sites SS#9, 
FO#4, MS#2 and 9S#11.

Figure 3.  Down-core profile of Δ13C (δ13Ccarbonate - δ
13C

organic
) in 

bulk sediment from Deep Springs Lake sites SS#9, FO#4, MS#2 
and 9S#11.
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DISCUSSION & CONCLUSIONS

Botz and van der Borch (1984) proposed that dolomite 

would form in fresh water lakes under conditions of 

extreme super saturation and high Mg content. Meister 

and others (2011) in their previous investigation Deep 

Springs Lake mapped out a number of carbonate 

minerals, including both aragonite and dolomite. 

There are two different equilibriums present in this 

system: the atmosphere with DIC and DIC with the 

carbonates.  A more negative δ13C value indicates a 

larger amount of 12C, the lighter carbon isotope.  13C is 

heavier than 12C and forms slightly stronger chemical 

bonds.  In addition, diffusion of 13CO
2
 is slower than 

that of 12CO
2
 because of the associated difference in 

mass (O’Leary, 1988). If inorganic precipitation of 

carbonate minerals from pore water is the dominant 

dolomite forming process, then the δ13C
carbonate

 should 

be isotopically heavier than the pore water that formed 

it.  Wacey and others (2007) proposed that microbial 

metabolism could explain the isotopic compositions of 

dolomitic sediments from lakes in South Australia.

Field evidence for intense microbial activity at spring 

site 9S#11 includes bubbles of methane gas, indicating 

methanogenesis at depth.  In methanogenesis, bacteria 

intake organic matter and produce one reduced species 

(methane, CH
4
) with isotopically depleted δ13C and 

one oxidized species (CO
2
) with isotopically enriched 

δ13C.  At 9S#11 the δ13C of the pore water DIC 

maintains an enriched average value of 9.4‰ although 

it becomes slightly depleted with depth (Plon, 2014, 

this volume), whereas the δ13C
carbonate

 remains uniform 

with an average value of 3.8‰ (Fig. 4).  In contrast, 

the predicted values for carbonate inorganically 

precipitated from this DIC (in gray) are based upon 

carbon fractionation factors from Rubinson & Clayton 

(1969) for a system in equilibrium.  These data are 

inconsistent with dolomite precipitating from the 

porewater DIC that is associated with methanogenesis. 

The δ13C and δ18O values from the carbonates of 

spring site 9S#11 (Fig. 2) and the TOC (Fig. 1) 

remain relatively uniform except for an excursion 

beginning at ~35 cm depth. Aragonite (CaCO
3
) 

exhibits an orthorhombic crystal lattice, whereas 

dolomite (MgCa(CO
3
)

2
) is hexagonal.  The differences 

in these lattices and the bond strength with carbon 

causes fractionation between 12C and 13C resulting in 

a fractionation factor for aragonite that >1‰ more 

depleted than dolomite (Meister et al., 2011).  The 

excursion of δ13C & δ18O values toward the base of the 

9S#11 core, and possibly the excursions at depths of 

~25 cm in two other cores, supports an inference that 

the different fractionation factors for different minerals 

explains this phenomenon. We observe a discernible 

increase in aragonite at the depth where isotopic 

depletion begins to occur.

Consistency with depth for site 9S#11 is particularly 

apparent throughout all isotope data plots although 

Figure 4.  Down-core profile comparing δ13Ccarbonate values from 
the bulk sediment and Dissolved Inorganic Carbon (DIC) in pore 
water from Deep Springs Lake spring site 9S#11. Pore water 
data from Plon, 2014, this volume. Gray lines forecast expected 
δ13C carbonate values for a system in equilibrium with the δ13C 
of the DIC in the pore water (Rubinson & Clayton, 1969). The 
dramatic difference in predicted and measured carbonate carbon 
isotopic compositions precludes inorganic precipitation as the 
sole mechanism for carbonate formation.
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it is striking in the values including organic matter 

because there are many components that would cause 

increased variation.  A wide range of fractionation 

factors is expected depending on ambient CO
2
 

concentrations, although the largely negative δ13C 

values from the organic matter (Fig. 2) and subsequent 

elevated ∆13C values (Fig. 3) are associated with 

the presence of additional biological factors.  The 

average δ13C organic matter value of -23.2‰ (Fig. 

2), and average fractionation factor of 26.9‰ (Fig. 

3) is similar to recorded isotopic analyses of Rubisco 

in C
3
 plants (Popp et al., 1998).  These data suggest 

the organic matter was fixed through standard 
photosynthetic processes involving lake bicarbonate 

for the carbonate source.  Either high CO
2
 and/or low 

growth rate conditions present in Deep Spring Lake 

at the time of dolomite precipitation are liable to be 

effects of the hypersaline environment.

With the assumption that the organic matter is 

fixed from the dissolved inorganic carbon (DIC) 
during surface precipitation, the difference between 

δ13C
carb

 and δ13C
org

 should be relatively constant if 

the δ13C
carb

 is set at the surface rather than within 

the sediment.  This is the case for 9S#11 (Fig. 3), 

providing further support for surface precipitation 

rather than microbially mediated precipitation in 

the sediment.  The plot of δ13C in the organic matter 

(Fig. 2) becomes slightly isotopically depleted with 

depth but does not show the sharp excursion present 

in the neighboring carbonate plots.  Also, the δ13C
carb 

values are not depleted, which would be the case if the 

carbon source for dolomite precipitation was respired 

organic material produced during a biological process 

such as sulfate reduction.  Sulfate reduction produces 

isotopically depleted bicarbonate for the DIC and 

since these dolomites appear to have precipitated from 

DIC in equilibrium with the atmosphere, it is unlikely 

that dolomite from Deep Springs Lake formed as a 

byproduct of sulfate reducing bacteria.

Figure 5 is a cross-plot showing δ13C values (plotted 

against δ18O) for carbonate lake sediments.  The 

δ13C data collected from Deep Springs Lake spring 

Figure 5.  Cross-plot of δ18Ocarbonate and δ13Ccarbonate from bulk carbonate sediment in Deep Springs Lake (9S#11 & MS#2) and from the 
dolomitic and non-dolomitic Coorong Lakes in South Australia. Note that the lakes plot in distinctly different areas from each other 
and from Deep Springs Lake values.
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site 9S#11 and non-spring site MS#2 range from 

2.9 to 4.2‰ while values from the Coorong Region 

of South Australia plot more negatively.  Also, δ13C 

values for Coorong dolomitic lake sediments range 

from -1.2 to +3.2‰ whereas non-dolomitic lake 

sediments are more positive and condensed between 

+1.1 and +3.1‰ (Wacey et al., 2007).  The reason 

that dolomitic sites in Deep Springs Lake plot with 

more enriched δ13C values may simply be due to 

meteoric differences in location sites.  If so, spring 

and non-spring locations near Deep Springs Lake that 

do not contain dolomite would present even more 

enrichment and would be plotted above the data from 

this exploration.

In summary, it appears unlikely that the DIC at 

9S#11 spring is in equilibrium with the atmosphere 

and may have been influenced by methanogens.  
The δ13C

carbonate
 & δ18O

carbonate
 data indicate that the 

carbonate precipitated from DIC in equilibrium with 

the atmosphere and not from the DIC produced by 

respiration of organic matter.  Therefore, it is dubious 

to infer that dolomite precipitation is solely mediated 

by anaerobic microbial metabolisms.  
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